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DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM cell

Sense amplifier

Three steps of 
charge movement
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DRAM Charge over Time

Why does DRAM need the extra timing margin?

In theory margin

cell

Sense amplifier

In practice



1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cell that can 

store small amount of charge

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature
– Leads to extra timing margin when operating at 

low temperature 

Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cell that can 

store small amount of charge;

1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cells that can 

store large amount of charge



Same size �
Same charge �

Different size �
Different charge �

Same latency Different latency
Large variation in cell size �
Large variation in charge �
Large variation in access latency

DRAM Cells are Not Equal
RealIdeal

Largest cell

Smallest cell



1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cells that can 

store large amount of charge

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature
– Leads to extra timing margin when operating at 

low temperature 

Two Reasons for Timing Margin

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature
– Leads to extra timing margin when operating at 

low temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature
– Leads to extra timing margin when operating at 

low temperature 



Cells store small charge at high 
temperature 
and large charge at low temperature 
� Large variation in access latency

 

Room Temp. Hot Temp. (85°C)

Small leakage Large leakage



DRAM Timing Parameters
•DRAM timing parameters are dictated by 

the worst case 
– The smallest cell with the smallest charge   

in all DRAM products

– Operating at the highest temperature

• Large timing margin for the common case�  Can lower latency for the common case
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Typical DIMM at 
Low Temperature

Obs 1. Faster Sensing

More charge

Strong charge
flow

Faster sensing

Typical DIMM at Low Temperature
� More charge � Faster sensing

Timing
(tRCD)

17% ↓
 No Errors

115 DIMM 
characterization



Obs 2. Reducing Restore Time

Larger cell & 
Less leakage � 
Extra charge

No need to fully
restore charge

Typical DIMM at lower temperature
� More charge � Restore time reduction

 Read (tRAS)

37% ↓
 Write (tWR)

54% ↓
No Errors

115 DIMM 
characterization

Typical DIMM at 
Low Temperature



Empty 
(0V)

Full 
(Vdd)

Half
Obs 3. Reducing Precharge Time
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Sense amplifier

Sensing Precharge

Precharge 
?

– Setting bitline to half-full 
charge 

Typical DIMM at 
Low Temperature



Empty (0V) Full (Vdd)

Half

bitline

Not fully 
precharged

More charge
� strong sensing

Access empty cell Access full cell

Timing
(tRP)

35% ↓
 No Errors

115 DIMM 
characterization

Typical DIMM at Lower Temperature
� More charge � Precharge time reduction

Obs 3. Reducing Precharge Time



Adaptive-Latency DRAM
• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer profiles multiple sets of 
reliable DRAM timing parameters at different 
temperatures for each DIMM
– System monitors DRAM temperature & uses appropriate 

DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature



14.0%

2.9%

10.4%

Real System Evaluation

AL-DRAM provides high performance 
improvement, greater for multi-core workloads
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Summary: AL-DRAM
• Observation

– DRAM timing parameters are dictated by the 
worst-case cell  (smallest cell at highest temperature)

• Our Approach: Adaptive-Latency DRAM (AL-DRAM) 
– Optimizes DRAM timing parameters for the common 

case (typical DIMM operating at low temperatures)

• Analysis: Characterization of 115 DIMMs
– Great potential to lower DRAM timing parameters (17 – 

54%) without any errors

• Real System Performance Evaluation 
– Significant performance improvement (14% for 

memory-intensive workloads) without errors (33 days)



Adaptive-Latency DRAM: Optimizing 
DRAM Timing for the Common-Case
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)
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Parallelism: Demand vs. Supply
Demand Supply

Out-of-order 
Execution

Multi-cores

Prefetchers

20

Multiple
Banks



Increasing Number of Banks?

How to improve available parallelism within DRAM?

Adding more banks → Replication of shared structures

Replication → Cost
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Our Observation
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Time

1. Wordline enable
2. Charge sharing

3. Sense amplify

4. Charge restoration

5. Wordline disable

6. Restore sense-amps

Data Access

Local to a subarray



Subarray-Level Parallelism
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Subarray-Level Parallelism: Benefits
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Time

Data Access

Data Access

Data Access

Data Access Saved Time

Commodity DRAM

Subarray-Level Parallelism

Two requests to 
different subarrays 
in same bank



Results Summary
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Commodity DRAM Subarray-Level Parallelism

17%

19%



A Case for Exploiting Subarray-Level 
Parallelism (SALP) in DRAM

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, 
Jamie Liu, Onur Mutlu

Published in the proceedings of 39th

International Symposium on Computer Architecture 
2012
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